The Dullin-Gottwald-Holm Equation: Classical Lie Approach and Exact Solutions
نویسنده
چکیده
The Lie-group formalism is applied to investigate the symmetries of the Dullin-Gottwald-Holm equation φt −αφxxt +2wφx +3φφx + γφxxx = α(2φxφxx +φφxxx), which describes the unidirectional propagation of two dimensional waves in shallow water over a flat bottom. We derived the infinitesimals that admit the classical symmetry group. The reduced ordinary differential equation is further studied and many new families of traveling wave solutions are successfully obtained.
منابع مشابه
An integrable shallow water equation with linear and nonlinear dispersion.
We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still pr...
متن کاملPersistence Property and Asymptotic Description for DGH Equation with Strong Dissipation
where the constants α2 and γ/c 0 are squares of length scales and the constant c 0 > 0 is the critical shallow water wave speed for undisturbed water at rest at spatial infinity. Since this equation is derived by Dullin, Gottwald, and Holm, in what follows, we call this new integrable shallow water equation (1) DGH equation. If α = 0, (1) becomes the well-known KdV equation, whose solutions are...
متن کاملOn asymptotically equivalent shallow water wave equations
The integrable 3rd-order Korteweg-de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces an entire family of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, nonlocal, normal-form transformations introduce...
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملExact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries
In this paper Lie symmetry analysis is applied to find new solution for Fokker Plank equation of geometric Brownian motion. This analysis classifies the solution format of the Fokker Plank equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010